EMU CMS Meeting

Draft

O.Prokofiev Fermilab

CSC gas system specifications

Sas mixture, gas component specs

Detector volume

Chamber layout connections on disks

ndividual gas lines and rates

Blobal view on gas flow, recycling, leaks, air intake, purification, recuperation

Pipes, cleaning, outgasing

Sas pressure analysis

Controls/Safety for different operation conditions

Conclusion

Gas mixture, gas component specification

- mixing precision: ±1% or better
- stability over one year: ±0.3% or better
- fresh gas component specs (CERN Catalog)
 - Argon 46 (99.996% purity)
 - Carbon Dioxide 40 (99.99% purity)
 - CF₄ 45 (99.995% purity)
- reserve room for a fourth gas component (e.g., H₂O, iso-C₄H₁₀) Cost Estimation

(conversion \$1 = 1.5 CHF)

Gas	Gas Cor	mponent	Gas Mixture	Gas Mixtu		
Components	Co	ost	Cost	Cost		
	CHF/kg	CHF/m3	CHF/m3	USD/m3		
Argon 46	2.2	3.92	1.57	1.05		
Carbon Dioxide 40	13.17	5.57	2.79	1.86		
Tetrafluoramethane 45	78.25	285.6	28.56	19.04		
	_	Total:	32.91	21.94		

Fresh gas component specs **CERN Store Catalog**

A: ARGON 46 - Ar

CHNICAL SHEET: LO-GE N° 230

NIMUM PURITY: 99.996%

XIMUM IMPURITIES:

: 5 ppm : H2O: 10 ppm

classified as a hazardous substance

EMICAL FORMULA: Ar

LABEL: 9.23

LAR MASS: 39.948 g/mol LUME MASS: 1.78 kg/m3 ILING POINT: -185.86°C

STINCTIVE COLOUR: brown-green LINDER PRESSURE: 200 bar at 15°C LINDER UNION: W21, 8x1/4" r.h.

0.140.8: ARGON 46 - 10,6 M3

ode: 60.02.10.140.8

ption: ARGON 46 - 10,6 M3

ce: 3.92 CHF for 1 CUBIC METRE

t of Issue: 1 BOTTLE(S) of 10.6 CUBIC METRE

ailable Self Service: No

nual Forecast: 475 CUBIC METRE

acteristics:

NDITIONNEMENT: bouteille de 50 litres

60.04.15.D: CARBON DIOXIDE 40 - CO2

Description:

MAC VALUE: 5000 ppm CHEMICAL FORMULA: CO2 MOLAR MASS: 44.010 g/mol VOLUME MASS: 1.98 kg/m3 SUBLIMATION TEMP.: -78.5°C

DISTINCTIVE COLOUR: dust grey RAL 7037

BOTTLE UNION: W21.8 x 1/14" r.h.

: >99.99%

IMPURITIES: O2 < 20 ppm H2O < 30 ppm

CO+CnHm < 20 ppm

60.04.15.225.2: CO2.40 BK 12 CYL. - 450 KG

Item Code: 60.04.15.225.2

Description: CO2.40 BK 12 CYL. - 450 KG

Price: 5.57 CHF for 1 KILOGRAM(S)

Unit of Issue: 1 BANK(S) of 450 KILOGRAM(S)

Available Self Service: No

Annual Forecast: 180 KILOGRAM(S)

Characteristics:

GAZ: CO2 40

PRESSION bt. (15 °C): 49,5 bar

CONDITIONNEMENT: batterie de 12 bouteilles

60.56.10.C: TETRAFLUOROMETHANE 45 - CF4

Description:

TECHNICAL SHEET: N° 511 MIN. PURITY: 99.995%

MAX. IMPURITIES: H2O: 5 ppm CO: 5 pp

CO2: 5 ppm O2: 5 ppm N: 20 ppm Others: 10 ppm VOLUME MASS: 3.65 kg/m3

CYLINDER UNION: W21,8 x 1/14" r.h.

60.56.10.100.7: TETRAFLUOROMETHANE 45 -

Item Code: 60.56.10.100.7

Description: TETRAFLUOROMETHANE 45 - 3

Price: 78.25 CHF for 1 KILOGRAM(S)

Unit of Issue: 1 BOTTLE(S) of 32 KILOGRA

Available Self Service: No

Annual Forecast: 8 KILOGRAM(S)

Characteristics:

CONDITIONNEMENT: bouteille de 50 litres

Chemical Compatibility

http://www.praxair.com/Praxair.nsf/X1/specga_purega?openDocun

to Materials Compatibility

Satisfactory for use with the intended gas.

Unsatisfactory for use with the intended gas.

Hru C7 - Conditionally acceptable for use with the intended gas as follows:

Satisfactory with brass having a low 65-70% maximum) copper content.

Brass with higher copper content is

catisfactory with acetylene; however, cylinder acetylene is packaged dissolved in a solvent (generally acetone) which may be incompatible with these elastomers.

nacceptable.

Compatibility varies depending on pecific Kalrez® compound used. Consult E. I. DuPont for information on specific applications.

- C4-Satisfactory with brass, except where acetylene or acetylides are present.
- C5-Generally unsatisfactory, except where specific use conditions have proven acceptable.
- C6-Satisfactory below 1000 psig.
- C7-Satisfactory below 1000 psig where gas velocities do not exceed 30 ft /sec.
- I Insufficient data available to determine compatibility with the intended gas.

Compatibility Chart			Materials of Construction														
			Metals				Plastics				Elastome						
Common Name	Chemical Formula	Brass	Carbon Steel	Stainless Steel	Alominom	Zinc	Copper	Monel	Kel-F	Teflon	Tefzel	Kynar	PVC	Polycxarbonate	Kairaz	Viton	Buna-N
Carbon Dioxide	CO	5	s	s	5	s	S	s	S	s	s	s	s	s	s	s	s
Argon	Ar	5	s	s	5	s	s	5	\$	s	5	s	s	\$	5	s	\$
Halocarbon 14	CF,	s	s	s	s	1/	5	5	s	5	s	s	U	U	C3	s	s

Detector Volume

		Chamber	Sub-Total	
Chamber	Quantity	Volume	Volume	
Туре		(liter)	(liter)	
ME 1/1	72	28	2016	
ME 1/2	72	75	5400	
ME 1/3	72	81	5832	
ME 2/1	36	106	3816	
ME2/2	72	193	13896	
ME 3/1	36	99	3564	
ME3/2	72	193	13896	
ME 4/1	36	91	3276	
ME 4/2	72	193	13896	
		Total:	65592	

Detector Volume without ME4/2 = 51.7 m³

Chamber Layout Connection on Dis

- Four ME1/1 per gas line
 - Four ME1/2 per gas line
- Four ME1/3 per gas line

- Three ME2/2 per gas line
- Three ME2/1 per gas line

Stations 3 and 4: similarly

Gas and Water pipeline layout must be the same

Gas Flow Lines and Rates

Gas lines and gas flow rates per one Endcap

Disk	Module	Chambers	Single	CSCs	Volume	Volume	Nominal	No. of	
21010									
		in ME z/r	Chamber	per	per	exchange	Channel	Gas	_'
		Ring	Volume	gas channel	gas channel		Flow rate	Channels	
			(liter)		(liter)	(hours)	(liter/hour)		(
1	ME1/1	36	28	4	112	6	19	9	
	ME1/2	36	75	4	300	6	50	9	
	ME1/3	36	81	4	324	12	27	9	
2	ME2/1	18	106	3	318	6	53	6	
	ME2/2	36	193	3	579	12	48	12	
3	ME3/1	18	99	3	297	6	50	6	
	ME3/2	36	193	3	579	12	48	12	
4	ME4/1	18	91	3	273	6	46	6	
	ME4/2	36	193	3	579	12	48	12	
Total pe	er Endcap	270						81	

Gas Channel (3 or 4 CSCs): 1 Volume exchange in 6-12 hours

CSC: 1 Volume replacement in 1.5-4 hours

al EMU: 7 m³/hr (nominal);

 $126 (\sim 50 \text{ l/hr}) + 36 (\sim 25 \text{ l/hr}) = 162 \text{ gas line}$

CSC Gas System

Gas Rack Layout

Gas Flow Global View

Gas Flow Meters

Individual Gas Lines:

inlets: 36 lines at 25 l/hr and 126 lines at 50 l/hr

outlets: 36 lines at 25 l/hr and 126 lines at 50 l/hr

Fresh Gas Injection Line (two set of mass flow controllers):

normal run: 350 l/hr

• fill in: 7000 l/hr

Recycling:

collection: 7000 l/hr

return to detector: 7000 l/hr

Exhaust (or CF 4 Recuperation)

• 350 l/hr ???

All numbers are for nominal flow (50% of max)

EMU Gas Leaks

Chamber Leaks:

- production test <10⁻⁵ CSC volumes per min (at 1 mbar):
 - <2 cc/min for large CSCs
 - <1 cc/min for small CSCs
 - will change to 5 mbar...
- leak rate: we do not expect to exceed
 - < $10^{-5} \times 60 \text{ min/hr} \times 66 \text{ m}^3 = 40 \text{ l/hr}$
 - however, one should be careful with extrapolations...
- At leak of 700 l/hr (~20 times larger than expected):
 - · we will exceed our ability to supply enough fresh gas (fixable
 - we will be paying \$100K/yr for gas (twice the estimated cost for the system without a CF4 recovery plant)

CF4 Recovery

4 Recovery Factory: 100K CHF = \$70K

Expenses (no recovery): $\sim 0.35 \text{ m}^3$ /hr x 24 h x 8 months x \$22/m³ = \$45K/yr suming 75% efficiency, the recovery will save: (350-leak)/350 x75% x\$45K/yr erecovery plant will pay off for itself in:

\$70K / ((350-leak)/350 x 75% x \$45K) yrs

Air Intake. Purification.

ata on air intake rate are available (measurements will be done) irst measurements in Lab.7 were unsuccessful (RGA was broker Worst Case Scenario:

- 1.5% of air (mostly N₂) results in noticeable change in performance
- 350 l/hr (fresh gas) \times 1.5% = 5 l/hr is max allowable
- Implications for O₂ and H₂0 and Purification:
 - 20% of O₂ in air:

1 I/hr of O₂, or 750 I/month

• 3% of H₂O at 100% humidity:

0.15 g/hr of H₂O, or 100 g/month

ication Requirements:

100 ppm of O₂ (max removal rate 1 l/hr of O₂, or 750 l/month)

Capacity of the activated copper is about 45 g for 2 liter of O_2 => 17 kg

1000 ppm of H₂O (max removal rate 0.15 g/hr of H₂O, or 100 g/month)

N₂ (monitoring only, 3000 ppm for warning)

Outgasing and discharge products (oil, Si, SiF₄, SnF_x, ...)--TBD

On-Disk Pipes

supply pipe running along disk perimeter:

- ID/OD=10/12 mm, copper
- upstream connector to the gas rack (?)
- 12mm/12 mm tube to tube bulkhead connector (?

supply pipe to the 1st chamber

- ID/OD=10/12 mm, (copper, flexible pipe?)
- upstream connector (?)
- downstream connector to match CSC connector:
 12 mm copper tube x 1/4" male FNPT brass connector (PARKER P/N GBZ 12-1/4-B)

chamber-to-chamber pipes

- ID/OD=10/12 mm, (copper, plastic?)
- upstream/downstream connectors to match CSC connectors

last chamber to the return pipe

- ID/OD=10/12 mm, (copper, plastic?)
- upstream connector to match CSC connector:
- upstream connector to match bulkhead connector of the return pipe(?)

return pipe running along disk perimeter

ID/OD=14/16 mm, copper; connectors: ?, ?

Is this type OK? 39.71.05.B: ROUND TUBES - COPPER

Description:

STANDARD: ISO 1635 - DIN 17671 ALLOY SYMBOL : Cu DHP STATE : O (ANNEALED)

CHEMICAL COMPOSITION : Cu =

P = 0.013 - 0.050%

MECHANICAL CHARACTERISTICS Elongation at break A5 : min. 38% Vickers hardness VH 10 : 40 to 65

SEAMLESS DRAWN TUBES

MANUFACTURING LENGTH: 50 m.

Pipe cleaning

Copper pipes to be cleaned (according to Ferdi Hahn):

- hydrochloric acid,
- soap washing (P17),
- · demineralised water,
- alcohol,
- dry air,
- pumping?

Other elements and pipes to be cleaned:

- Valves
- ???

Any elements that may outgas (especially oil)?

• Pumps? Valves? Bubblers? Etc.

Overpressure in CSCs

Chamber Pressure Operation Range:

- CSC nominal pressure to be within 1 to 3 mbar
- Max pressure 5 mbar (bubbler relief to air, control actions)
- Low pressure 0.5 mbar (control actions)

Chamber pressure depends:

- pressure drop in the chambers, pipelines
- hydrostatic pressure (chamber location on the disk)

Pressure Drop

Pressure Drop vs Chamber Flow Rate (Mesurements)

Pressure Drop on Circular Tubes (Calculations *)

CERN GWG: http://lhcexp.web.cern.ch/LHCExp/GasWG/standard/p drop.htm

Simplified Overpressure Analysi

CSC:

p=0.15 mbar at 50 l/hr (measured), 0.6 mbar for 4 chambers

Pipe of 10 mm ID:

p=0.01 mbar/m at 50 l/hr (calcul.), 0.3 mba 30 m long pipe

Pipe of 14 mm ID:

p=0.003 mbar/m at 50 l/hr (calcul.), 0.1 mbar for 30 long pipe

Hydrostatic pressure:

p=0.071 mbar/m, 1 mbar form

Chamber Overpressure: scheme of measurements

Scheme of Measurements

Pressure above atmospheric --> 0-10 mbar

- points of measurements with CS-137

- points of panel deflection measurements

Chamber current measurements with CS-137

2. Chamber deflection measurements

ME234/2-014

Chamber Performance at Overpressure

 Δ A/A = 2% / mbar

Panel deflection: 0.03 mm/mbar

Operation, Gas System Control

At $\triangle P = 5$ " water (5 mbs $\triangle A/A = 10\%$

Operation, Gas System Control

- Filling
- Normal Run
- Shutdown
- Opening disks or moving the whole endcap
- Standby with no gas flow
- Dismounting chambers; reinstalling chambers
- Alarms (wrong flow, pressure, gas, broken elements, leaks, purifier monitor) and corresponding actions
- Troubleshooting (leaks, broken elements, ???)
- Fool-proof analysis (control mistakes, abrupt weather changes, element failure)
- Impurities analysis
- Maintenance (flow meter and pressure sensor calibration, purifier maintenance, pneumatic valves, etc.)

Conclusion

As results of EMU gas system studies we defined:

- Gas component specs
- Actual chamber volumes
- Chamber interconnection on the disk
- Chamber operational gas flow rates
- Pipeline material and diameters
- Chamber operational pressure range
- · Leak rate and air intake limits
- Purification requirements

till, there is a lot to do to finalize the specifications...

prototype of the closed loop gas system must be tested with a CSC nder intense radiation (ageing test at CERN)